Table 1. Lattice parameters and structural data for some GdM compounds, where M is Al, Cu, Rh, Ag or Au

Compound GdAl GdAl	Lattice constant $a = 3.7208 \pm 0.0002 \text{ Å}$ $a = 9.274 \pm 0.007$ $b = 7.679 \pm 0.008$ $c = 5.584 \pm 0.003$	Structure type CsCl+2nd phase CcAl	Reference (a) This paper
GdCu GdCu GdCu	a = 3.505 $a = 3.503 \pm 0.001$ $a = 3.5020 \pm 0.0004$	CsCl CsCl CsCl	(b) (a) This paper
GdRh	$a = 3.4425 \pm 0.0006$	CsCl	This paper
GdAg GdAg GdAg GdAg	a = 3.66 a = 3.653 $a = 3.6476 \pm 0.0008$ $a = 3.6491 \pm 0.0002$	CsCl CsCl CsCl CsCl	(c) (d) (a) This paper
GdAu GdAu	$a = 3.593 \pm 0.002$ $a = 3.6009 \pm 0.0008$ $a = 4.522 \pm 0.005$ $b = 10.826 \pm 0.008$ $c = 4.734 \pm 0.004$	CsCl+2nd phase CsCl and CrB	(e) This paper This paper

(a) Baenziger & Moriarty (1961). (b) Dwight (1959a). (c) Dwight (1959b). (d) Iandelli (1960). (e) Chao, Luo & Duwez (1963).

Examination of the published literature indicates that the rare earth-aluminum compounds, RAI, crystallize with either b.c.c., CsCl type or one of two different orthorhombic structures, i.e. CeAl type, which belongs to the space group Cmc2₁ (van Vucht, 1957) or CrB type found for YAI (Dagerhamn, 1963). All the lines in the GdAl powder pattern could be indexed on the basis of the CeAl type orthorhombic structure. Although Baenziger & Moriarty (1961) found some b.c.c. lines in their complex X-ray pattern for GdAl while none were found in this research, this does not necessarily indicate that one of the results is incorrect. The difference could be explained by the existence of a high-temperature b.c.c. phase retained upon quenching by Baenziger & Moriarty (1961) but not retained in this research because of either too slow a cooling rate during quenching or too low an annealing temperature, i.e. below the orthorhombic ≠ b.c.c. transition temperature.

Chao, Luo & Duwez (1963) found that when GdAu was very rapidly quenched, only the b.c.c. lines were observed, but when this compound was slowly cooled both the complex and b.c.c. lines were obtained. No other literature data

are available concerning the structures of the complex phase of any of the rare-earth-gold equi-atomic compounds. All the lines, other than those which were indexed as b.c.c., CsCl type, could be indexed as orthorhombic CrB, B_f type.

The author wishes to acknowledge O. D. McMasters for his assistance in carrying out some of the computations.

References

BAENZIGER, N. C. & MORIARTY, J. L., JR. (1961). Acta Cryst.

CHAO, C. C., LUO, H. L. & DUWEZ, P. (1963). J. Appl. Phys. 34, 1971.

DAGERHAMN, T. (1963). Acta Chem. Scand. 17, 267.

DWIGHT, A. E. (1959a). U. S. Atomic Energy Comm. Rept. ANL-6099.

DWIGHT, A. E. (1959b). Trans. Met. Soc. AIME, 215, 283.
IANDELLI, A. (1960). Atti accad. nazl. Lincei Rend., Classe sci. fis. mat. e nat. 29, 62.

VUCHT, J. H. N. VAN (1957). Z. Metallk. 48, 253.